Data Structures and Algorithm Analysis

Dr. Syed Asim Jalal Department of Computer Science University of Peshawar

about me

Syed Asim Jalal

- BS. University of Peshawar
- MS. NUST
- PhD. University of Southampton (UK)

Past Teaching at:

- Southampton University
- University of Peshawar
- Kohat University of S&T

Syllabus - tentative topics

Includes the following topics and more..

- Data Structure Types
- Array
- Linked List
- Stack
- Queues
- Analysis of Algorithms
- Sorting Algorithms and its Analysis
 - selection sort,
 - bubble sort,
 - merge sorting,
 - Quick sort
 - Radix sort

- Bucket Sort (address-calculation sort)
- Counting Sort
- Tree
 - Traversal, Insertion, Deletion Algorithms
- Graphs
 - Introduction, Depth First Search, Breadth First Search, Minimum Spanning Trees, etc.

– etc.

Objectives of the course

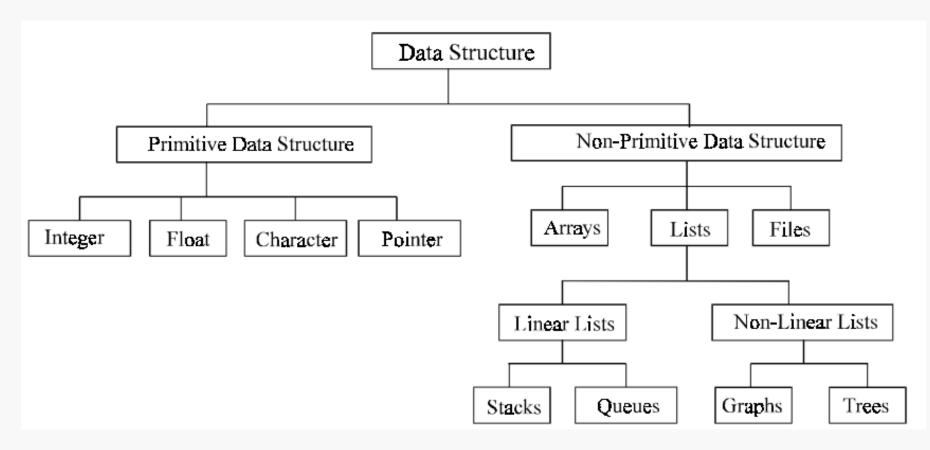
- <u>Understanding</u> different options available for storing different types of data
 - List/Array, Linked Lists, Trees, Queue, Graph, Hash Table etc.
- Being able to <u>implement</u> different operations on different data structures (Algorithms)
- Understanding <u>when to use</u> a particular data structure based on the *requirement of a problem* at hand
 - One data structure is not always better.
- Understanding <u>Analysis</u> of <u>Algorithm</u> and being able to analyse algorithms
- Understanding <u>factors</u> that influence the selection of data structures in some application
 - Memory efficiency
 - Time efficiency

Data Structure

- A Data Structure is a specific format to organize data in computer memory so that it can be used to efficiently store and process data by computer programs.
- Data Structure is organization of information, usually in memory, for better algorithm efficiency.
- A data structure organizes different data items based on its relationship to each other.

Efficient retrieval and access of data

- Complex applications requires processing of data, which include accessing data and writing new data.
- This data processing need to be efficient in terms of <u>memory space</u>, <u>time</u> or <u>both</u>.
- The choice of how the data is organised can make big difference in efficiency of the complex programs.

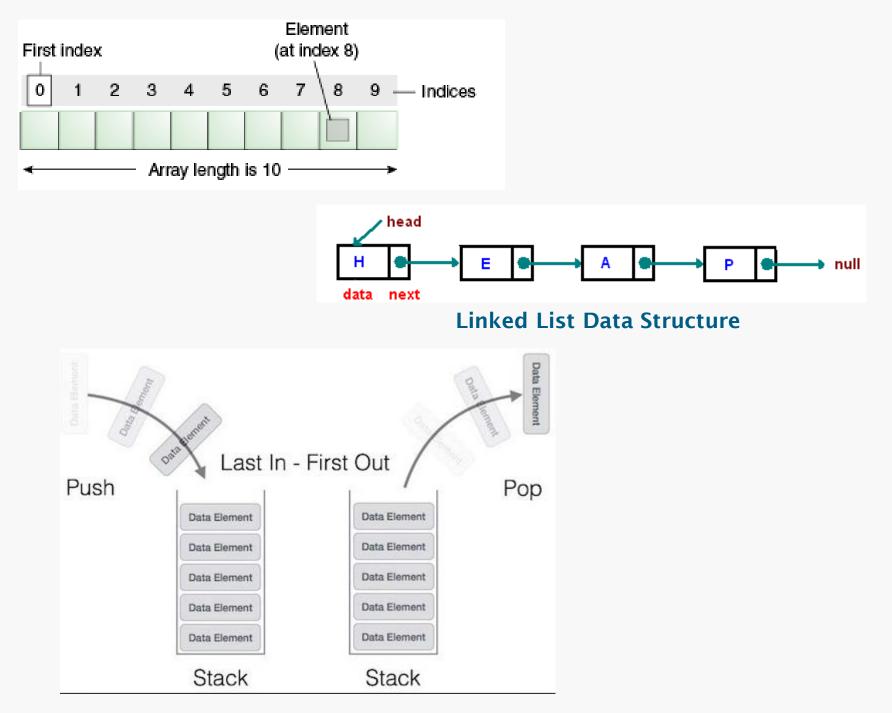

Data Structure vs Files

- Data Structure is often referred to data storage in main memory (RAM)
- Data storage representation in secondary storage is referred to as File Structure.
 - or Databases

- Data may be organized in many ways
 - e.g. Arrays, Linked Lists, Trees, etc.
- The choice of a particular data structure depends on two considerations:
 - It must be able to represent the actual relationships of data in the real world
 - The structure should efficiently process the data when necessary

- Data structure for storing records of data, for example, students names list.
 - Arrays or Linked Lists
- Issues
 - Depends on operations on data.
 - Operations efficiency (Time required to complete operations)
 - Are there going to be only Retrieval or Insertion operation on Data?
 - Are there going to be Deletions?

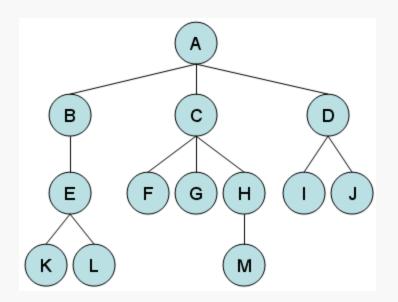
Classification of Data Structures

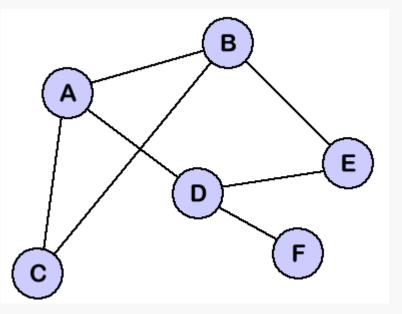

Primitive data structures

- These are the basic data structures and are directly operated upon by the machine instructions, which is in a primitive level.
- They are integers, floating point numbers, characters, string constants, pointers etc.
- Non-primitive data structures
 - They are more sophisticated data structures based on structuring of a group of basic data structures or items.
 - Array, list, files, linked list, trees and graphs

Linear and Non-linear Data Structures

Linear Data Structures


- Linear data structures organize their data elements in a linear fashion, where data elements are attached one after another.
- All linear data structures look like a list.
- In Linear data structures data elements are traversed one after the other sequentially.
- Some commonly used linear data structures are arrays, linked lists, stacks and queues.


Non-Linear Data Structures

- In nonlinear data structures, data elements are not organized in a sequential fashion.
- A data item in a nonlinear data structure could be attached to several other data elements based on their relationship among.
- All data items cannot be traversed sequentially, we need to backtrack.
- Data structures like Trees and Graphs are examples nonlinear data structures.

- A tree is a data structure that is made up of a set of linked nodes, which can be used to represent a hierarchical relationship among data elements.
- A graph is a data structure that is made up of a finite set of edges and vertices. Edges represent connections or relationships among vertices that stores data elements.

Tree Data Structure

Graph Data Structure

Static and Dynamic Data Structures

Static Data Structures

- In static data structures the size of the data structure is known in advance and is fixed.
- Fixed number of data items can be stored in static data structures
- Advantage:
 - It has no memory overflow problems
- Disadvantage:
 - Storing less elements than the maximum number will results in memory wastage.
- For example, int, float, array etc.

Dynamic Data Structures

- Dynamic Data Structures have no fixed size and any number of data items can be stored
- The memory used can grow and shrink based on the number of elements stored.
- Advantage:
 - Store any number of data elements
 - No wastage of memory
- Disadvantage:
 - Memory overflow can happen.

Common Operations on Data Structures

Insertion

- The operation that add a new data element item in a data structure

Deletion

 Deletion operation removes a data elements from a data structure

Traversing

 Accessing each data element in a data structure in order to perform some data processing.

Searching

 Finding data elements in a structure that contains some value or meets some search criteria or condition.

Sorting

- Arranging data elements in some order. For example, ascending or descending order.
- Sorting data has many useful applications.

Merging

Combining records in two different data structures in to one data structure.

Data Representation

Data Representation

- The basic unit of data representation is a bit - one 1 or 0
 - A bit is implemented as a switch that can take one of two possible values
 - One bit can represent information about any two states

Why is Computer based on 1 or 0s?

So a 1 or 0 is a data and they mean nothing by itself, we need to assign meaning to 1 or 0 to make it represent some information.²³

- 2 Bits can represent 4 states
 00,01,10,11
- Bits can represent 8 states
- In general *n* Bits can represent 2ⁿ states.
 - We can assign different meaning to each state.
 - For example, a number, a character.
 - It is up to the programmer to determine how to interpret a series of 1s and 0s.

Representing Positive and Negative Numbers

- We can represent positive and negative numbers using 1s and 0s.
 - e-g: 00000111 represent 7 using binary number system.
 - Decimal to Binary conversion method is used to represent decimal numbers using binary
- Negative numbers are represented using 2's complement
 - We use the process of 2s complement to store any negative number
 - 11111001 represents -7
- Left most bit represents the sign and indicates to the processor about how to treat the remaining bits as positive or negative.

- Real Numbers are also represented in binary form
 - 387.53 is a real number.
- Real numbers are represented through two numbers: mantissa and integer power.
 - Real number is usually implemented through 4 bytes
- e-g: 387.53 is represented as .38753 x 10²
 - Mantissa: 38753, Power: 2
 - Mantissa in Binary: 000000001001011101100001
 - Exponent in Binary: 0000010
 - -387.53 = 000000010010111011000010000010

e-g: 0.0038753 can be represented as 0.38753 x 10⁻²

- Mantissa: 38753, Power: -2
- Mantissa: 38753
 - Mantissa: 000000001001011101100001
- Power: -2
 - Power: 11111110
- 387.53 = 00000001001011101100001111111110